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Abstract—Document classification and indexing methods
depend on having informative image features. This paper
shows how large families of complex features can be built out
of simpler ones through construction of a graph lattice—a
hierarchy of related subgraphs linked in a lattice. A graph
lattice enables efficiency gains that make it possible to effec-
tively employ bag-of-words methods for document classification
using high-dimensional feature vectors. Each feature is itself
a subgraph, and a feature vector is a count of occurrences
of subgraphs in the image. The graph lattice enables methods
for adaptively growing a feature space of subgraphs tailored
to observed document genres. We demonstrate the approach
through classification of forms containing rectilinear line art.
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I. INTRODUCTION

Recent years have seen a surge in bag-of-words ap-
proaches to visual categorization and image indexing in
computer vision [4], [13]. Objects and scenes are modeled
as large vectors of relatively simple feature measurements
which are employed by hashing and vector comparison
methods.

An important issue is the information captured by a
feature. For document images containing dense text, the
localized arrangement of keypoints centered at word blobs
has proven effective at generating geometric “fingerprint”
features [8] based on triangle area ratios.

A different way of encoding spatial configuration is
through graphs. Objects and scenes are modeled as parts
(nodes) and relations (links). An observed image generates
a graph of parts and their relations to other parts, and
recognition is performed by subgraph matching. Subgraph
matching poses two difficulties. First, it is known to be
exponentially expensive. This problem is to some extent
alleviated by use of attributed graphs, that is, graphs whose
nodes contain properties that constrain possible matches.
Nonetheless, subgraph matching has been limited to rela-
tively small subgraphs, due to the second difficulty. Namely,
noise and variability cause observed graphs to deviate from
ideal models. This demands use of inexact graph matching
techniques, which drastically increases matching cost and
largely removes the advantages of attributed graph matching
because possible matches of differently-labeled nodes must
now be explored. Conte et al. provide a thorough review of
these issues [2].

This paper proposes to combine bag-of-words and graph
matching approaches in a way that leverages the advantages
of each. Features correspond to subgraphs, each of which
encodes a limited amount of information about spatial
configuration in a local neighborhood. By supporting large
numbers of these feature subgraphs, we stand a good chance
of capturing image structure through exact graph matching.
This is analogous to the method of shingling in text retrieval
[7], but challenges lie in extending to two dimensions. Other
work in bringing text retrieval methods to image retrieval
observes that a large vocabulary of structural features does
provide for robustness through the use of statistical methods
for matching [6].

This idea is applicable to classification and indexing
of documents containing consistent subgraphs. Our focal
problem is forms documents which have sparse and incon-
sistent word blobs, but which usually contain a network of
rectilinear rule lines serving as region separators, data field
locators, and organizational devices to group together similar
fields. Rule lines intersect each other in well-defined ways
that form junction and free-end terminator graph nodes.
These are natural candidates for the nodes of an attributed
graph representation (a data graph) while the rule line
segments linking junctions become the links.

Junction-link relations define the topology and direc-
tional geometry of an observed line-art image. Dimensional
geometry—the lengths of rule lines between junctions—is
important too. But, these properties are continuous-valued
in our target domain and therefore complicate mapping
and matching in discrete graphs. In order to focus on the
development of the graph lattice approach, this study is
confined to rectilinear directional attributes.

Doctype classification is a principal step in virtually all
automatic document processing systems. Other features used
for forms classification include text content, connected com-
ponent attributes, Haar filters, zonal densities, texture filters,
and line-art locations and junctions. Methods for forms
classification include string matching, template matching,
nearest-neighbor, decision trees, generative feature density
models, and neural networks [9], [10], [11], [12]. Chen and
Blostein provide an extensive survey [1]. By and large, most
prior work emphasizes sophisticated learning algorithms
applied to simple, easy-to-compute features.
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In the following, Section II describes the use of subgraphs
as image features. We demonstrate the benefits of adding
larger subgraph features for forms clustering and classifica-
tion. Section III then shows how processing may be made
efficient by use of a graph lattice architecture. Efficiency is
important to maintaining large vocabularies of graph-lattice
features. Organized as a lattice with appropriate bookkeep-
ing, each subgraph requires only a small incremental amount
of work to compute its mappings onto a data graph.

II. DATA GRAPHS AND SUBGRAPH FEATURES FOR

RECTILINEAR LINE ART ANALYSIS

Effective handling of image noise and variability is a key
issue in document recognition. The data corpus used in this
paper is the NIST tax forms database [5], which consists
of 11185 images, of size 2560 x 3300 pixels, representative
of scanned hand-filled and typed United States Tax Forms.
Figure 1a shows that the line art in this data is often noisy
and distorted. Using standard as well as specialized image
processing approaches, we can extract rule lines and their
intersections at junctions with approximately 95% reliability.
In a typical form of 250 terminations and junctions, we will
therefore see about 10-15 errors. Typical errors are substitu-
tion of T-junctions and X-junctions (actually + junctions in
upright orientation), and vice versa; introduction of spurious
terminations where line-art is broken by image noise; and
failure to identify L-junctions.

Rectilinear line-art gives rise to 13 junction/termination
types as shown in Figure 2. For an observed line-art image,
after extraction of rule lines it is straightforward to build a
data graph consisting of attributed nodes and links among
them, as shown in Figure 1b. A node’s attribute is the index
of its junction/termination type.

The NIST tax form data comprises 20 categories and
adequately represents many commercial-scale forms classifi-
cation problems. As a baseline step, we may ask whether the
counts of primitive junction types is sufficiently informative
to distinguish NIST tax forms. Figure 3 indicates not.
This is a histogram of pairwise similarities between 1000
NIST images. We observe two primary modes. The high-
similarity mode derives from forms of the same type, while
the low-similarity mode derives from forms of different
type. Note that the modes are not clearly separated, which
means that there is an area of confusion about whether
two images should be assigned to the same category. This
confusion region is due to the noise and variability in
these images, given that some different forms happen to
be designed to contain approximately the same number of
terminations, L-junctions, T-Junctions, and crossings (X-
junctions). There are many possible ways of assessing the
similarities/differences between feature vectors—in this case
between 13-dimensional vectors of junction type counts.
The similarity measure used here, called CMD (Common-
Minus-Difference), is described below. Euclidean distance

a

b

Figure 1. a. Section of a NIST tax form image. b. The data graph (junctions
and links) extracted from it. Note errors of two missing T-junctions.

Figure 2. The 13 junction types in rectilinear line art.

and cosine distance both produce less distinct histogram
modes.

If features and similarity measures could be found that
produce two well-separated modes in the histogram, this
would enable a very straightforward greedy algorithm for
clustering and classifying images. If the same-category and
different-category modes were well separated, threshold val-
ues could be determined from the histogram automatically.

Figure 3. Histogram of pairwise CMD similarity scores (see text) for 1000
NIST documents based on primitive junction type counts.
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Figure 4. a. Six of the 98 size 2 groupings of primitive junctions. b. A
few larger subgraphs found on tax forms.

More complex features are obtained by considering not
simply counts of primitive junctions, but counts of pairs,
triples, and larger collections of junctions. Given the con-
straints of how junctions may link to one another, there are
98 ways that the thirteen primitive junction types may be
grouped pairwise, as suggested in Figure 4a. The number
of possible junction-triple subgraphs is much larger, and
clearly the number grows rapidly with subgraph size. Higher
order subgraphs provide increasing constraint on how the
primitive junctions in the observed data graph are linked,
up to the highest possible subgraph which is the data graph
itself. Feature vectors incorporating higher order subgraphs
can therefore be more informative than primitive junction
counts.

The space of possible higher-order subgraphs is only
sparsely populated by subgraphs actually observed in data.
In adding subgraph features, it is useful to utilize only these,
and omit non-observed subgraphs from the feature vector.
Figure 4b presents a few of the many subgraph features of
different sizes observed in NIST tax form data. The graph
lattice supports strategies for selecting relatively large—
therefore potentially highly discriminative—subgraphs based
on observed data graphs.

We describe here the results of extending the feature
vector to count subgraph matches for subgraphs of sizes two,
three and four. The first step in the process is to build the
feature representation. We choose a subset of observed data
graphs which we expect to include representatives of most
subgraphs that the full data set will contain. Roughly, this
subset should contain one or a few examples of each image
category. For these, we extract and catalog every subgraph
of the target size. By observing a plateau in growth of the
subgraph catalog with sample documents, we determined
that 50 randomly selected NIST image samples is sufficient
to build a useful vocabulary of subgraphs for clustering and
classification.

Given a feature measurement vector defined by subgraphs
of degree 1 to D, where D is maximum subgraph size, we
measure counts of matches to an observed data graph. Each

match produces a mapping of subgraph nodes to data graph
nodes. One such mapping is illustrated in Figure 7. Efficient
means for performing the requisite subgraph matching is
described in Section III.

We have found that straight subgraph match counts do not
constitute a good feature vector for comparing data graphs.
The reason has to do with overweighting of larger subgraphs.
We therefore perform a re-weighting of subgraph match
counts according to overlaps in the junctions they map to,
and we perform vector comparisons on the resulting Junction
Normalized Mapping Count vector.

A second consideration is the similarity measure used
to compare junction-normalized feature vector (subgraph
match) counts. Obvious choices are Euclidean distance and
cosine distance. We have found that neither of these works as
well as another similarity measure, CMD (Common-Minus-
Difference):

s(v1, v2) =
∑

i(min(v1,i, v2,i) − |v1,i − v2,i|)
max(|G1|, |G2|) ∗ Nd

(1)

where Gk is the size (number of junctions) of data graph k
and Nd is the number of subgraph sizes considered in the
junction-normalized feature vector.

Due to the normalization term based on the sizes of
the data graphs being compared, the range of the CMD
similarity measure is -2 (minimum, least similarity) to 1
(maximum, best similarity).

Under the junction-normalized feature count and the CMD
similarity score, we find that higher order subgraph fea-
tures do indeed lead to improved discrimination. Figure 5a
presents pairwise similarity histograms for feature vectors up
to subgraph size 4. For the NIST data, beyond subgraph fea-
ture size 2, different image categories are clearly separated.
Under this representation using feature vectors comprising
subgraphs of sizes 1-3 or 1-4, a simple greedy clustering
algorithm correctly sorts all 11,185 NIST images into their
respective 20 categories, with one category split into two.

Clustering results are presented in Figure 5b. Clustering
uses two automatically-computed thresholds. If an observed
feature similarity to a cluster’s centroid exceeds the upper
threshold, the document is added to that cluster. If feature
similarity falls below a lower threshold for all existing
clusters, a new cluster is started. Otherwise, the image is
put aside into an “unknown” category until all images have
been considered. This process is iterated with the unknown
images until no more can be assigned to a cluster based
on the upper threshold. Finally, each unknown image is
assigned to the best-matching cluster.

Quality of clustering is scored as the edit-distance to
the groundtruth correct assignment of images to categories.
One edit operation is tallied for each incorrectly classified
document, and one edit operation is tallied for merging any
two clusters representing the same groundtruth category.
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Figure 5. a. Histograms of pairwise CMD distances for 200 NIST
documents based on feature vectors of subgraph match counts, ranging from
size 1 subgraphs only through subgraphs of sizes 1 through 4. Small vertical
lines show automatically-computed thresholds (clearly within-cluster and
start-new-cluster) for greedy clustering. b. Clustering results for 11,185
combined NIST SpecialDatabase6 and SpecialDatabase2 images.

Forms clustering and classification is almost 100% correct
for subgraphs of size 3 and larger; the only error is an
extra cluster duplicating one of the groundtruth categories.
To our knowledge is the best result reported to date on
the benchmark NIST forms data set, improving even on
supervised classifiers which by definition are supplied with
a known number of categories [10], [11], [12].

III. GRAPH LATTICE DATA STRUCTURE

A. Nodes and Struts

A program architecture for computing feature vectors
representing large subgraphs should support two main pur-
poses: (1) efficient computation of subgraph (feature ele-
ment) matches to observed data graphs, and (2) effective
construction of more complex features (larger subgraphs)
from smaller ones. The graph lattice fulfills these needs.

The basic element of a graph lattice is the graph lattice
node, as distinguished from a node of a data graph. A graph
lattice node represents a subgraph, plus its mappings onto
data graphs and its relations to larger and smaller subgraphs
in the lattice. As a matter of terminology, we call smaller
subgraphs parent nodes, and larger subgraphs generated
from them by adding junctions, child nodes. In general two
subgraphs of arbitrary size could be conjoined to create a

Figure 6. A graph lattice consists of layers of subgraphs related by addition
or deletion of primitives (junctions, in the case of rectilinear line art).
These relations are maintained through struts maintaining the mappings
and linkages formed by incrementally added primitives.

larger subgraph, perhaps of size the sum of the sizes of
parent nodes, or perhaps smaller if overlap is allowed. Thus
far we have found such a general mechanism unnecessary.
Instead, we only support single-level links in the graph
lattice representing the accretion of a single junction (data
graph node) at a time. In other words, child graph lattice
nodes are always one degree larger than their parents.

The relations among graph lattice nodes are maintained
by struts. See Figure 6. The purpose of a strut is twofold.
First, it maintains the junction index mappings between a
parent and child node. In general any graph lattice node will
index its component junctions in arbitrary order, and a strut
keeps these organized between parent and child graph lattice
nodes. Second, a strut indicates the primitive type, placement
on the parent, and links for the junction that constructs the
child from the parent.

B. Sweep-Upward Matching

Matching of the complete set of nodes in a graph lattice to
an observed data graph is efficient because each graph lattice
node (subgraph) can be incrementally mapped based on
mappings of its parents. See Figure 7. Processing proceeds
bottom up, layer-by-layer, in a sweep-upward algorithm. At
layer subgraph-size = d, for each node dni we compute
subgraph mappings as follows: choose arbitrarily one parent
node at layer d − 1. The strut to this parent defines the
possible mappings of dni onto the data graph based on
mappings of the parent. The strut also defines the single
extra data graph junction that node dni contributes. We
essentially follow the approach used in the VF2 subgraph
matching algorithm of Cordella et al. [3]; it is easy to test
the data graph to see if it contains such a junction, properly
linked, to support a complete mapping of dni. In our Java
implementation, using the sweep-up algorithm, the compu-
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Figure 7. In the sweep-upward algorithm, subgraph mappings are based
on the previously-computed subgraph mappings at the parent level. Struts
maintain bookkeeping data structures enabling only a quick check of
whether the incremental junction is present in the data graph (upper
mapping arrow).

tation of the junction-normalized feature vector for a graph
lattice of 2,953 graph lattice nodes (subgraphs) averages 43
milliseconds per data graph over a set of typical NIST tax
form documents. Using the sweep-up algorithm, subgraph
matching takes approximately 1 microsecond per subgraph
for subgraphs ranging up to size 4; this is a speedup of better
than 10x over brute-force attributed subgraph matching.

C. Growing a Graph Lattice

Our approach trades storage necessary to hold the graph
lattice for faster matching time via the sweep upward al-
gorithm. The number of possible subgraphs grows exponen-
tially with subgraph size. This explosion is managed through
the judicious selection of a relatively smaller number of
subgraphs represented explicitly as graph lattice nodes,
among the space of all possible subgraphs at any degree.
Any data domain will reflect characteristic patterns as more
or less commonly occurring subgraphs, while many other
possible subgraphs will not be observed at all. Thus, the
selection of graph lattice nodes constitutes knowledge about
the data domain in the form of the subgraph features we
choose to maintain. As a general framework, we propose an
approach to constructing graph lattices based on incremental
evaluation and acceptance of candidate graph lattice nodes
which accrete to an existing simpler graph lattice of accepted
nodes, based on observed examples. See Figure 8. The
algorithm is to iterate the following steps.

Figure 8. A graph lattice can be constructed by promoting Candidate nodes
to Accepted status. Accepted nodes are eligible to spawn more Candidates.

Step 1: Generate Candidate graph lattice nodes from
Accepted graph lattice nodes and observed data.

Every mapping of a Level d subgraph onto an observed
data graph can serve as a seed for spawning new Level
d+1 graph lattice nodes which are supergraphs of the graph
represented by that graph lattice node. Each primitive linked
to the perimeter of the subgraph can itself give rise to a
subgraph one data graph node larger in size, and therefore
one level higher in a graph lattice. Step 1 of the graph
lattice construction algorithm is to examine mappings of
Accepted graph lattice nodes onto observed data graphs
and spawn new Candidate graph lattice nodes based on
actual supergraphs encountered in the data. This step may
involve mapping the existing graph lattice to previously seen
data graphs or to new, previously unobserved data graphs.
This process involves some bookkeeping to follow subgraph
mappings, detect duplicate candidates, and build struts to all
of a Candidates’ parents at at Level N .

Step 2: Select Candidate graph lattice to promote to
Accepted graph lattice nodes

The second step of the graph lattice construction algo-
rithm is to select certain Candidate graph lattice nodes for
promotion to Accepted status. In the forms image clustering
work reported above, we employ a trivial Candidate selec-
tion strategy of accepting all candidate nodes up to a certain
level.

Depending on the acceptance strategy used in Step 2.,
various stopping criteria may become meaningful, includ-
ing: (1) The graph lattice contains a threshold number of
Accepted graph lattice nodes at a given level; (2) The graph
lattice contains a threshold number of Accepted graph lattice
nodes in total; (3) The list of Candidate graph lattice nodes
is exhausted (the forms clustering/classification application
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uses this); (4) Quality measures for Candidate nodes falls
below a threshold.

For the NIST data set, the time required to build a graph
lattice of degree 4 from the data graphs of 50 randomly
sampled images is three seconds. To build a graph lattice of
degree 4 from 1000 NIST images takes 50 seconds, resulting
in 4,560 graph lattice nodes.

IV. CONCLUSION

This paper has demonstrated the mechanics of building
and using graph lattices where each node of the lattice
represents a subgraph in a data graph derived from an
image. This has been applied to the classification of forms
documents containing rectilinear line art, where we can now
efficiently compute high-dimensional vectors of informative
features corresponding to counts of exact matches of numer-
ous subgraphs. The approach has been shown to improve
upon state-of-the art results for classification and clustering
on the benchmark NIST data set. We have verified the
approach in a second data set of commercial importance,
namely clustering and classification of AMA Dental forms
which occur in over 100 subtypes.

There remains much to explore about the basic idea of
constructing and maintaining lattices of related subgraphs.

Beyond the trivial method of building a graph lattice
by accepting all Candidate nodes up to some point, many
other strategies are possible. For example, one idea we have
explored briefly is selection of highly indicative candidates
using an entropy-based measure of node type diversity.
Subgraphs dominated by one type of primitive tend to reflect
repeated patterns like meshes, while subgraphs containing
many different primitive types are more often unique to a
particular forms image class.

In a graph lattice it is easy to manage chains of subgraph
parentage up to large subgraphs which are unique or highly
indicative of a layout pattern. These can be used not only
as elements of high-dimensional feature vectors, but also as
terms in inverted indices that identify known classes through
voting.

Another important issue is extension to continuous-valued
attributes such as dimensional attributes of the arrangement
of primitive image features. This may entail some sort of
quantization of subgraphs and the introduction of quantita-
tive similarity links among them.
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